Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 59(1): 41-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26794932

RESUMO

The precise role of hormones binding to Gαq protein-coupled receptors (H-GαqPCRs) in chronic heart diseases remains poorly understood. To address this, we used a model of cultured adult rat ventricular myocytes stimulated with endothelin-1 (ET-1) or phenylephrine (PE) over a period of 8 days in vitro (DIV). Chronically treated cells showed an increased number of arrhythmogenic Ca(2+) transients when electrically paced at 0.5 Hz. While their post-rest behaviour was preserved, from DIV6 onwards the amplitude of caffeine-evoked Ca(2+) transients was increased in hormone-treated cells, suggesting an elevated sarcoplasmic reticulum Ca(2+) load. The duration of electrically evoked global Ca(2+) transients gradually increased over the culturing time indicating decreased activity of processes removing cytosolic Ca(2+). In treated cells, spontaneous Ca(2+) sparks displayed smaller amplitudes from DIV6 onwards, and a slower decay period for PE (from DIV3) and for ET-1 (from DIV6). This cellular functional remodelling was associated with changes in gene expression: chronic ET-1 treatment decreased PKCγ transcripts, whereas PE increased PKCγ and SERCA2a transcripts as probed by qPCR. Western blot analysis confirmed the upregulation of PKCγ with PE. To study ET-1 receptor desensitization in vivo, osmotic minipumps containing either NaCl or ET-1 were implanted in mice and Ca(2+) signalling was studied in acutely isolated ventricular myocytes after 2 weeks of chronic treatment. Interestingly, while cellular responses to isoproterenol stimulation were preserved in ET-1 treated animals, the inotropic response of myocytes to ET-1 stimulation was abrogated. We therefore conclude that chronic stimulation of cardiac myocytes by H-GαqPCRs induces cellular remodelling of Ca(2+) cycling with altered PKCγ expression and promotion of arrhythmogenic cellular responses.


Assuntos
Cálcio/metabolismo , Endotelina-1/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Células Cultivadas , Bombas de Infusão Implantáveis , Masculino , Ratos , Ratos Wistar
2.
Eur Heart J ; 36(33): 2257-66, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26069213

RESUMO

AIMS: Pathological cardiac hypertrophy is a major predictor for the development of cardiac diseases. It is associated with chronic neurohumoral stimulation and with altered cardiac Ca(2+) signalling in cardiomyocytes. TRPC proteins form agonist-induced cation channels, but their functional role for Ca(2+) homeostasis in cardiomyocytes during fast cytosolic Ca(2+) cycling and neurohumoral stimulation leading to hypertrophy is unknown. METHODS AND RESULTS: In a systematic analysis of multiple knockout mice using fluorescence imaging of electrically paced adult ventricular cardiomyocytes and Mn(2+)-quench microfluorimetry, we identified a background Ca(2+) entry (BGCE) pathway that critically depends on TRPC1/C4 proteins but not others such as TRPC3/C6. Reduction of BGCE in TRPC1/C4-deficient cardiomyocytes lowers diastolic and systolic Ca(2+) concentrations both, under basal conditions and under neurohumoral stimulation without affecting cardiac contractility measured in isolated hearts and in vivo. Neurohumoral-induced cardiac hypertrophy as well as the expression of foetal genes (ANP, BNP) and genes regulated by Ca(2+)-dependent signalling (RCAN1-4, myomaxin) was reduced in TRPC1/C4 knockout (DKO), but not in TRPC1- or TRPC4-single knockout mice. Pressure overload-induced hypertrophy and interstitial fibrosis were both ameliorated in TRPC1/C4-DKO mice, whereas they did not show alterations in other cardiovascular parameters contributing to systemic neurohumoral-induced hypertrophy such as renin secretion and blood pressure. CONCLUSIONS: The constitutively active TRPC1/C4-dependent BGCE fine-tunes Ca(2+) cycling in beating adult cardiomyocytes. TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis.


Assuntos
Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPC/fisiologia , Angiotensina II/metabolismo , Angiotensinogênio/metabolismo , Animais , Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Hemodinâmica/fisiologia , Homeostase/fisiologia , Camundongos Knockout , Remodelação Ventricular
3.
Circ Res ; 114(10): 1623-39, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24812351

RESUMO

Genetically encoded Ca(2+) indicators constitute a powerful set of tools to investigate functional aspects of Ca(2+) signaling in isolated cardiomyocytes, cardiac tissue, and whole hearts. Here, we provide an overview of the concepts, experiences, state of the art, and ongoing developments in the use of genetically encoded Ca(2+) indicators for cardiac cells and heart tissue. This review is supplemented with in vivo viral gene transfer experiments and comparisons of available genetically encoded Ca(2+) indicators with each other and with the small molecule dye Fura-2. In the context of cardiac myocytes, we provide guidelines for selecting a genetically encoded Ca(2+) indicator. For future developments, we discuss improvements of a broad range of properties, including photophysical properties such as spectral spread and biocompatibility, as well as cellular and in vivo applications.


Assuntos
Sinalização do Cálcio/genética , Corantes Fluorescentes , Miócitos Cardíacos/química , Miócitos Cardíacos/fisiologia , Transgenes , Animais , Diagnóstico por Imagem/métodos , Técnicas de Transferência de Genes , Humanos , Miócitos Cardíacos/metabolismo
4.
Cell Calcium ; 39(1): 13-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16242187

RESUMO

Although in erythrocytes calcium is thought to be important in homeostasis, measurements of this ion concentration are generally seen as rather problematic because of the auto-fluorescence or absorption properties of the intracellular milieu. Here, we describe experiments to assess the usability of popular calcium indicators such as Fura-2, Indo-1 and Fluo-4. In our experiments, Fluo-4 turned out to be the preferable indicator because (i) its excitation and emission properties were least influenced by haemoglobin and (ii) it was the only dye for which excitation light did not lead to significant auto-fluorescence of the erythrocytes. From these results, we conclude that the use of indicators such as Fura-2 together with red blood cells has to be revisited critically. We thus utilized Fluo-4 in erythrocytes to demonstrate a robust but heterogeneous calcium increase in these cells upon stimulation by prostaglandin E(2) and lysophosphatidic acid. For the latter stimulus, we recorded emission spectra of individual erythrocytes to confirm largely unaltered Fluo-4 emission. Our results emphasize that in erythrocytes measurements of intracellular calcium are reliably possible with Fluo-4 and that other indicators, especially those requiring UV-excitation, appear less favourable.


Assuntos
Cálcio/sangue , Eritrócitos/química , Corantes Fluorescentes , Compostos de Anilina/metabolismo , Dinoprostona/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Corantes Fluorescentes/metabolismo , Fura-2/metabolismo , Hemoglobinas/metabolismo , Humanos , Indóis/metabolismo , Lisofosfolipídeos/farmacologia , Espectrometria de Fluorescência/métodos , Raios Ultravioleta , Xantenos/metabolismo
5.
Thromb Haemost ; 92(6): 1269-72, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15583732

RESUMO

Prostaglandin E(2) (PGE(2)) is released from platelets when they are activated. Using fluorescence imaging and the patch-clamp technique, we provide evidence that PGE(2) at physiological concentrations (10(-10) M) activates calcium rises mediated by calcium influx through a non-selective cation-channel in human red blood cells. The extent of calcium increase varied between cells with a total of 45% of the cells responding. It is well known that calcium increases elicited the calcium-activated potassium channel (Gardos channel) in the red cell membrane. Previously, it was shown that the Gardos channel activation results in potassium efflux and shrinkage of the cells. Therefore, we conclude that the PGE(2) responses of red blood cells described here reveal a direct and active participation of erythrocytes in blood clot formation.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Dinoprostona/metabolismo , Eritrócitos/metabolismo , Compostos de Anilina/farmacologia , Cátions , Membrana Eritrocítica/metabolismo , Corantes Fluorescentes/farmacologia , Humanos , Íons , Potenciais da Membrana , Infarto do Miocárdio/metabolismo , Técnicas de Patch-Clamp , Espectrometria de Fluorescência , Acidente Vascular Cerebral , Fatores de Tempo , Xantenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...